Kezdi.jl Documentation

Kezdi.jl is a Julia package that provides a Stata-like interface for data manipulation and analysis. It is designed to be easy to use for Stata users who are transitioning to Julia.[stata]

It imports and reexports CSV, DataFrames, FixedEffectModels, FreqTables, ReadStatTables, Statistics, and StatsBase. These packages are not covered in this documentation, but you can find more information by following the links.

Getting started

Kezdi.jl is in beta

Kezdi.jl is currently in beta. We have more than 400 unit tests and a large code coverage. Coverage The package, however, is not guaranteed to be bug-free. If you encounter any issues, please report them as a GitHub issue.

If you would like to receive updates on the package, please star the repository on GitHub and sign up for email notifications here.

Installation

To install the package, run the following command in Julia's REPL:

using Pkg; Pkg.add("Kezdi")

Every Kezdi.jl command is a macro that begins with @. These commands operate on a global DataFrame that is set using the setdf function. Alternatively, commands can be executed within a @with block that sets the DataFrame for the duration of the block.

Example

julia> using Kezdi
julia> using RDatasets
julia> df = dataset("datasets", "mtcars")32×12 DataFrame Row Model MPG Cyl Disp HP DRat WT QS ⋯ │ String31 Float64 Int64 Float64 Int64 Float64 Float64 Fl ⋯ ─────┼────────────────────────────────────────────────────────────────────────── 1 │ Mazda RX4 21.0 6 160.0 110 3.9 2.62 ⋯ 2 │ Mazda RX4 Wag 21.0 6 160.0 110 3.9 2.875 3 │ Datsun 710 22.8 4 108.0 93 3.85 2.32 4 │ Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 5 │ Hornet Sportabout 18.7 8 360.0 175 3.15 3.44 ⋯ 6 │ Valiant 18.1 6 225.0 105 2.76 3.46 7 │ Duster 360 14.3 8 360.0 245 3.21 3.57 8 │ Merc 240D 24.4 4 146.7 62 3.69 3.19 ⋮ │ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ 26 │ Fiat X1-9 27.3 4 79.0 66 4.08 1.935 ⋯ 27 │ Porsche 914-2 26.0 4 120.3 91 4.43 2.14 28 │ Lotus Europa 30.4 4 95.1 113 3.77 1.513 29 │ Ford Pantera L 15.8 8 351.0 264 4.22 3.17 30 │ Ferrari Dino 19.7 6 145.0 175 3.62 2.77 ⋯ 31 │ Maserati Bora 15.0 8 301.0 335 3.54 3.57 32 │ Volvo 142E 21.4 4 121.0 109 4.11 2.78 5 columns and 17 rows omitted
julia> setdf(df)32×12 DataFrame Row Model MPG Cyl Disp HP DRat WT QS ⋯ │ String31 Float64 Int64 Float64 Int64 Float64 Float64 Fl ⋯ ─────┼────────────────────────────────────────────────────────────────────────── 1 │ Mazda RX4 21.0 6 160.0 110 3.9 2.62 ⋯ 2 │ Mazda RX4 Wag 21.0 6 160.0 110 3.9 2.875 3 │ Datsun 710 22.8 4 108.0 93 3.85 2.32 4 │ Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 5 │ Hornet Sportabout 18.7 8 360.0 175 3.15 3.44 ⋯ 6 │ Valiant 18.1 6 225.0 105 2.76 3.46 7 │ Duster 360 14.3 8 360.0 245 3.21 3.57 8 │ Merc 240D 24.4 4 146.7 62 3.69 3.19 ⋮ │ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ 26 │ Fiat X1-9 27.3 4 79.0 66 4.08 1.935 ⋯ 27 │ Porsche 914-2 26.0 4 120.3 91 4.43 2.14 28 │ Lotus Europa 30.4 4 95.1 113 3.77 1.513 29 │ Ford Pantera L 15.8 8 351.0 264 4.22 3.17 30 │ Ferrari Dino 19.7 6 145.0 175 3.62 2.77 ⋯ 31 │ Maserati Bora 15.0 8 301.0 335 3.54 3.57 32 │ Volvo 142E 21.4 4 121.0 109 4.11 2.78 5 columns and 17 rows omitted
julia> @rename HP HorsepowerKezdi.jl> @rename HP Horsepower 32×12 DataFrame Row Model MPG Cyl Disp Horsepower DRat WT ⋯ │ String31 Float64 Int64 Float64 Int64 Float64 Float6 ⋯ ─────┼────────────────────────────────────────────────────────────────────────── 1 │ Mazda RX4 21.0 6 160.0 110 3.9 2.62 ⋯ 2 │ Mazda RX4 Wag 21.0 6 160.0 110 3.9 2.87 3 │ Datsun 710 22.8 4 108.0 93 3.85 2.32 4 │ Hornet 4 Drive 21.4 6 258.0 110 3.08 3.21 5 │ Hornet Sportabout 18.7 8 360.0 175 3.15 3.44 ⋯ 6 │ Valiant 18.1 6 225.0 105 2.76 3.46 7 │ Duster 360 14.3 8 360.0 245 3.21 3.57 8 │ Merc 240D 24.4 4 146.7 62 3.69 3.19 ⋮ │ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ 26 │ Fiat X1-9 27.3 4 79.0 66 4.08 1.93 ⋯ 27 │ Porsche 914-2 26.0 4 120.3 91 4.43 2.14 28 │ Lotus Europa 30.4 4 95.1 113 3.77 1.51 29 │ Ford Pantera L 15.8 8 351.0 264 4.22 3.17 30 │ Ferrari Dino 19.7 6 145.0 175 3.62 2.77 ⋯ 31 │ Maserati Bora 15.0 8 301.0 335 3.54 3.57 32 │ Volvo 142E 21.4 4 121.0 109 4.11 2.78 6 columns and 17 rows omitted
julia> @rename Disp DisplacementKezdi.jl> @rename Disp Displacement 32×12 DataFrame Row Model MPG Cyl Displacement Horsepower DRat W ⋯ │ String31 Float64 Int64 Float64 Int64 Float64 F ⋯ ─────┼────────────────────────────────────────────────────────────────────────── 1 │ Mazda RX4 21.0 6 160.0 110 3.9 ⋯ 2 │ Mazda RX4 Wag 21.0 6 160.0 110 3.9 3 │ Datsun 710 22.8 4 108.0 93 3.85 4 │ Hornet 4 Drive 21.4 6 258.0 110 3.08 5 │ Hornet Sportabout 18.7 8 360.0 175 3.15 ⋯ 6 │ Valiant 18.1 6 225.0 105 2.76 7 │ Duster 360 14.3 8 360.0 245 3.21 8 │ Merc 240D 24.4 4 146.7 62 3.69 ⋮ │ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ 26 │ Fiat X1-9 27.3 4 79.0 66 4.08 ⋯ 27 │ Porsche 914-2 26.0 4 120.3 91 4.43 28 │ Lotus Europa 30.4 4 95.1 113 3.77 29 │ Ford Pantera L 15.8 8 351.0 264 4.22 30 │ Ferrari Dino 19.7 6 145.0 175 3.62 ⋯ 31 │ Maserati Bora 15.0 8 301.0 335 3.54 32 │ Volvo 142E 21.4 4 121.0 109 4.11 6 columns and 17 rows omitted
julia> @rename WT WeightKezdi.jl> @rename WT Weight 32×12 DataFrame Row Model MPG Cyl Displacement Horsepower DRat W ⋯ │ String31 Float64 Int64 Float64 Int64 Float64 F ⋯ ─────┼────────────────────────────────────────────────────────────────────────── 1 │ Mazda RX4 21.0 6 160.0 110 3.9 ⋯ 2 │ Mazda RX4 Wag 21.0 6 160.0 110 3.9 3 │ Datsun 710 22.8 4 108.0 93 3.85 4 │ Hornet 4 Drive 21.4 6 258.0 110 3.08 5 │ Hornet Sportabout 18.7 8 360.0 175 3.15 ⋯ 6 │ Valiant 18.1 6 225.0 105 2.76 7 │ Duster 360 14.3 8 360.0 245 3.21 8 │ Merc 240D 24.4 4 146.7 62 3.69 ⋮ │ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ 26 │ Fiat X1-9 27.3 4 79.0 66 4.08 ⋯ 27 │ Porsche 914-2 26.0 4 120.3 91 4.43 28 │ Lotus Europa 30.4 4 95.1 113 3.77 29 │ Ford Pantera L 15.8 8 351.0 264 4.22 30 │ Ferrari Dino 19.7 6 145.0 175 3.62 ⋯ 31 │ Maserati Bora 15.0 8 301.0 335 3.54 32 │ Volvo 142E 21.4 4 121.0 109 4.11 6 columns and 17 rows omitted
julia> @rename Cyl CylindersKezdi.jl> @rename Cyl Cylinders 32×12 DataFrame Row Model MPG Cylinders Displacement Horsepower DRat ⋯ │ String31 Float64 Int64 Float64 Int64 Float6 ⋯ ─────┼────────────────────────────────────────────────────────────────────────── 1 │ Mazda RX4 21.0 6 160.0 110 3.9 ⋯ 2 │ Mazda RX4 Wag 21.0 6 160.0 110 3.9 3 │ Datsun 710 22.8 4 108.0 93 3.8 4 │ Hornet 4 Drive 21.4 6 258.0 110 3.0 5 │ Hornet Sportabout 18.7 8 360.0 175 3.1 ⋯ 6 │ Valiant 18.1 6 225.0 105 2.7 7 │ Duster 360 14.3 8 360.0 245 3.2 8 │ Merc 240D 24.4 4 146.7 62 3.6 ⋮ │ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ 26 │ Fiat X1-9 27.3 4 79.0 66 4.0 ⋯ 27 │ Porsche 914-2 26.0 4 120.3 91 4.4 28 │ Lotus Europa 30.4 4 95.1 113 3.7 29 │ Ford Pantera L 15.8 8 351.0 264 4.2 30 │ Ferrari Dino 19.7 6 145.0 175 3.6 ⋯ 31 │ Maserati Bora 15.0 8 301.0 335 3.5 32 │ Volvo 142E 21.4 4 121.0 109 4.1 7 columns and 17 rows omitted
julia> @tabulate GearKezdi.jl> @tabulate Gear 3-element Named Vector{Int64} Gear │ ──────┼─── 3 │ 15 4 │ 12 5 │ 5
julia> @keep @if Gear == 4Kezdi.jl> @keep @if Gear == 4 12×12 DataFrame Row Model MPG Cylinders Displacement Horsepower DRat ⋯ │ String31 Float64 Int64 Float64 Int64 Float64 ⋯ ─────┼────────────────────────────────────────────────────────────────────────── 1 │ Mazda RX4 21.0 6 160.0 110 3.9 ⋯ 2 │ Mazda RX4 Wag 21.0 6 160.0 110 3.9 3 │ Datsun 710 22.8 4 108.0 93 3.85 4 │ Merc 240D 24.4 4 146.7 62 3.69 5 │ Merc 230 22.8 4 140.8 95 3.92 ⋯ 6 │ Merc 280 19.2 6 167.6 123 3.92 7 │ Merc 280C 17.8 6 167.6 123 3.92 8 │ Fiat 128 32.4 4 78.7 66 4.08 9 │ Honda Civic 30.4 4 75.7 52 4.93 ⋯ 10 │ Toyota Corolla 33.9 4 71.1 65 4.22 11 │ Fiat X1-9 27.3 4 79.0 66 4.08 12 │ Volvo 142E 21.4 4 121.0 109 4.11 6 columns omitted
julia> @keep MPG Horsepower Weight Displacement CylindersKezdi.jl> @keep MPG Horsepower Weight Displacement Cylinders 12×5 DataFrame Row MPG Horsepower Weight Displacement Cylinders Float64 Int64 Float64 Float64 Int64 ─────┼─────────────────────────────────────────────────────── 1 │ 21.0 110 2.62 160.0 6 2 │ 21.0 110 2.875 160.0 6 3 │ 22.8 93 2.32 108.0 4 4 │ 24.4 62 3.19 146.7 4 5 │ 22.8 95 3.15 140.8 4 6 │ 19.2 123 3.44 167.6 6 7 │ 17.8 123 3.44 167.6 6 8 │ 32.4 66 2.2 78.7 4 9 │ 30.4 52 1.615 75.7 4 10 │ 33.9 65 1.835 71.1 4 11 │ 27.3 66 1.935 79.0 4 12 │ 21.4 109 2.78 121.0 4
julia> @summarize MPGKezdi.jl> @summarize MPG Summarize MPG: N = 12 sum_w = 12.0 mean = 24.53333333333333 Var = 27.844242424242417 sd = 5.276764389684498 skewness = 0.6109081273366428 kurtosis = 2.054454265238661 sum = 294.4 min = 17.8 max = 33.9 p1 = 17.8 p5 = 17.94 p10 = 18.78 p25 = 21.0 p50 = 22.8 p75 = 28.85 p90 = 32.849999999999994 p95 = 33.75 p99 = 33.9
julia> @regress log(MPG) log(Horsepower) log(Weight) log(Displacement) fe(Cylinders), robustKezdi.jl> @regress log(MPG) log(Horsepower) log(Weight) log(Displacement) fe(Cylinders), robust FixedEffectModel ==================================================================================== Number of obs: 12 Converged: true dof (model): 3 dof (residuals): 7 R²: 0.919 R² adjusted: 0.872 F-statistic: 16.5436 P-value: 0.001 R² within: 0.837 Iterations: 1 ==================================================================================== Estimate Std. Error t-stat Pr(>|t|) Lower 95% Upper 95% ──────────────────────────────────────────────────────────────────────────────────── log(Horsepower) -0.336986 0.0557811 -6.04122 0.0005 -0.468887 -0.205084 log(Weight) 0.17324 0.261239 0.663148 0.5285 -0.444491 0.790971 log(Displacement) -0.491497 0.239809 -2.04954 0.0796 -1.05855 0.0755604 ====================================================================================

Alternatively, you can use the @with block to avoid writing to a global DataFrame:

julia> renamed_df = @with df begin
           @rename HP Horsepower
           @rename Disp Displacement
           @rename WT Weight
           @rename Cyl Cylinders
       endKezdi.jl> @rename HP Horsepower

Kezdi.jl> @rename Disp Displacement

Kezdi.jl> @rename WT Weight

Kezdi.jl> @rename Cyl Cylinders

32×12 DataFrame
 Row  Model              MPG      Cylinders  Displacement  Horsepower  DRat   ⋯
     │ String31           Float64  Int64      Float64       Int64       Float6 ⋯
─────┼──────────────────────────────────────────────────────────────────────────
   1 │ Mazda RX4             21.0          6         160.0         110     3.9 ⋯
   2 │ Mazda RX4 Wag         21.0          6         160.0         110     3.9
   3 │ Datsun 710            22.8          4         108.0          93     3.8
   4 │ Hornet 4 Drive        21.4          6         258.0         110     3.0
   5 │ Hornet Sportabout     18.7          8         360.0         175     3.1 ⋯
   6 │ Valiant               18.1          6         225.0         105     2.7
   7 │ Duster 360            14.3          8         360.0         245     3.2
   8 │ Merc 240D             24.4          4         146.7          62     3.6
  ⋮  │         ⋮             ⋮         ⋮           ⋮            ⋮          ⋮   ⋱
  26 │ Fiat X1-9             27.3          4          79.0          66     4.0 ⋯
  27 │ Porsche 914-2         26.0          4         120.3          91     4.4
  28 │ Lotus Europa          30.4          4          95.1         113     3.7
  29 │ Ford Pantera L        15.8          8         351.0         264     4.2
  30 │ Ferrari Dino          19.7          6         145.0         175     3.6 ⋯
  31 │ Maserati Bora         15.0          8         301.0         335     3.5
  32 │ Volvo 142E            21.4          4         121.0         109     4.1
                                                   7 columns and 17 rows omitted
julia> @with renamed_df begin @tabulate Gear @keep @if Gear == 4 @keep MPG Horsepower Weight Displacement Cylinders @summarize MPG @regress log(MPG) log(Horsepower) log(Weight) log(Displacement) fe(Cylinders), robust endKezdi.jl> @tabulate Gear Kezdi.jl> @keep @if Gear == 4 Kezdi.jl> @keep MPG Horsepower Weight Displacement Cylinders Kezdi.jl> @summarize MPG Kezdi.jl> @regress log(MPG) log(Horsepower) log(Weight) log(Displacement) fe(Cylinders), robust FixedEffectModel ==================================================================================== Number of obs: 12 Converged: true dof (model): 3 dof (residuals): 7 R²: 0.919 R² adjusted: 0.872 F-statistic: 16.5436 P-value: 0.001 R² within: 0.837 Iterations: 1 ==================================================================================== Estimate Std. Error t-stat Pr(>|t|) Lower 95% Upper 95% ──────────────────────────────────────────────────────────────────────────────────── log(Horsepower) -0.336986 0.0557811 -6.04122 0.0005 -0.468887 -0.205084 log(Weight) 0.17324 0.261239 0.663148 0.5285 -0.444491 0.790971 log(Displacement) -0.491497 0.239809 -2.04954 0.0796 -1.05855 0.0755604 ====================================================================================

Benefits of using Kezdi.jl

Free and open-source

Speed

CommandStataJulia 2nd runSpeedup
@generate230ms46ms5x
@replace232ms32ms7x
@egen5.00s0.37s13x
@collapse0.94s0.28s3x
@tabulate2.19s0.09s24x
@summarize10.56s0.35s30x
@regress0.85s0.14s6x

See the benchmarking code for Stata and Kezdi.jl.

Use any Julia function

@generate logHP = log(Horsepower)

Easily extendable with user-defined functions

The function can operate on individual elements,

get_make(text) = split(text, " ")[1]
@generate Make = get_make(Model)

or on the entire column:

function geometric_mean(x::Vector)
    n = length(x)
    return exp(sum(log.(x)) / n)
end
@collapse geom_NPG = geometric_mean(MPG), by(Cylinders)

Commands

Setting and inspecting the global DataFrame

Kezdi.setdfFunction
setdf(df::Union{AbstractDataFrame, Nothing})

Set the global data frame.

source
Kezdi.@useMacro
@use "filename.dta", [clear]

Read the data from the file filename.dta and set it as the global data frame. If there is already a global data frame, @use will throw an error unless the clear option is provided

source
Kezdi.getdfFunction
getdf() -> AbstractDataFrame

Return the global data frame.

source
Kezdi.@listMacro
@list [y1 y2...] [@if condition]

Display the entire data frame or the rows for which the condition is true. If variable names are provided, only the variables in the list are displayed.

source
Kezdi.@headMacro
@head [n]

Display the first n rows of the data frame. By default, n is 5.

source
Kezdi.@tailMacro
@tail [n]

Display the last n rows of the data frame. By default, n is 5.

source

Filtering columns and rows

Kezdi.@keepMacro
@keep y1 y2 ... [@if condition]

Keep only the variables y1, y2, etc. in df. If condition is provided, only the rows for which the condition is true are kept.

source
Kezdi.@dropMacro
@drop y1 y2 ...

or @drop [@if condition]

Drop the variables y1, y2, etc. from df. If condition is provided, the rows for which the condition is true are dropped.

source

Modifying the data

Kezdi.@renameMacro
@rename oldname newname

Rename the variable oldname to newname in the data frame.

source
Kezdi.@generateMacro
@generate y = expr [@if condition]

Create a new variable y in df by evaluating expr. If condition is provided, the operation is executed only on rows for which the condition is true. When the condition is false, the variable will be missing.

source
Kezdi.@replaceMacro
@replace y = expr [@if condition]

Replace the values of y in df with the result of evaluating expr. If condition is provided, the operation is executed only on rows for which the condition is true. When the condition is false, the variable will be left unchanged.

source
Kezdi.@egenMacro
@egen y1 = expr1 y2 = expr2 ... [@if condition], [by(group1, group2, ...)]

Generate new variables in df by evaluating expressions expr1, expr2, etc. If condition is provided, the operation is executed only on rows for which the condition is true. When the condition is false, the variables will be missing. If by is provided, the operation is executed by group.

source
Kezdi.@collapseMacro
@collapse y1 = expr1 y2 = expr2 ... [@if condition], [by(group1, group2, ...)]

Collapse df by evaluating expressions expr1, expr2, etc. If condition is provided, the operation is executed only on rows for which the condition is true. If by is provided, the operation is executed by group.

source
Kezdi.@sortMacro
@sort y1 y2 ... , [desc]

Sort the data frame by the variables y1, y2, etc. By default, the variables are sorted in ascending order. If desc is provided, the variables are sorted in descending order

source

Summarizing and analyzing data

Kezdi.@countMacro
@count [@if condition]

Count the number of rows for which the condition is true. If condition is not provided, the total number of rows is counted.

source
Kezdi.@tabulateMacro
@tabulate y1 y2 ... [@if condition]

Create a frequency table for the variables y1, y2, etc. in df. If condition is provided, the operation is executed only on rows for which the condition is true.

source
Kezdi.@summarizeMacro
@summarize y [@if condition]

Summarize the variable y in df. If condition is provided, the operation is executed only on rows for which the condition is true.

source
Kezdi.@regressMacro
@regress y x1 x2 ... [@if condition], [robust] [cluster(var1, var2, ...)]

Estimate a regression model in df with dependent variable y and independent variables x1, x2, etc. If condition is provided, the operation is executed only on rows for which the condition is true. If robust is provided, robust standard errors are calculated. If cluster is provided, clustered standard errors are calculated.

The regression is limited to rows for which all variables are values. Missing values, infinity, and NaN are automatically excluded.

source

Use on another DataFrame

Kezdi.With.@withMacro
@with df begin
    # do something with df
end

The @with macro is a convenience macro that allows you to set the current data frame and perform operations on it in a single block. The first argument is the data frame to set as the current data frame, and the second argument is a block of code to execute. The data frame is set as the current data frame for the duration of the block, and then restored to its previous value after the block is executed.

The macro returns the value of the last expression in the block.

source
Kezdi.With.@with!Macro
@with! df begin
    # do something with df
end

The @with! macro is a convenience macro that allows you to set the current data frame and perform operations on it in a single block. The first argument is the data frame to set as the current data frame, and the second argument is a block of code to execute. The data frame is set as the current data frame for the duration of the block, and then restored to its previous value after the block is executed.

The macro does not have a return value, it overwrites the data frame directly.

source

Differences to standard Julia and DataFrames syntax

To maximize convenience for Stata users, Kezdi.jl has a number of differences to standard Julia and DataFrames syntax.

Everything is a macro

While there are a few convenience functions, most Kezdi.jl commands are macros that begin with @.

@tabulate Gear

Comma is used for options

Due to this non-standard syntax, Kezdi.jl uses the comma to separate options.

@regress log(MPG) log(Horsepower), robust

Here log(MPG) and log(Horsepower) are the dependent and independent variables, respectively, and robust is an option. Options may also have arguments, like

@regress log(MPG) log(Horsepower), cluster(Cylinders)

Automatic variable name substitution

Column names of the data frame can be used directly in the commands without the need to prefix them with the data frame name or using a Symbol.

@generate logHP = log(Horsepower)
No symbols or special strings

Other data manipulation packages in Julia require column names to be passed as symbols or strings. Kezdi.jl does not require this, and it will not work if you try to use symbols or strings.

Reserved words cannot be used as variable names

Julia reserved words, like begin, export, function and standard types like String, Int, Float64, etc., cannot be used as variable names in Kezdi.jl. If you have a column with a reserved word, rename it before passing it to Kezdi.jl.

If you want to avoid variable name substitution, you currently have two workarounds. One is to refer to the fully qualified name of the variable, including the module. The other is to define a constant function.

df = DataFrame(x = 1:2, y = 3:4)
x = 5
y() = 6
@with df begin
    @generate x1 = x
    @generate x2 = Main.x
    @generate y1 = y
    @generate y2 = y()
end

results in

2×6 DataFrame
 Row │ x      y      x1     x2     y1     y2
     │ Int64  Int64  Int64  Int64  Int64  Int64
─────┼──────────────────────────────────────────
   1 │     1      3      1      5      3      6
   2 │     2      4      2      5      4      6

Automatic vectorization

All functions are automatically vectorized, so there is no need to use the . operator to broadcast functions over elements of a column.

@generate logHP = log(Horsepower)

If you want to turn off automatic vectorization, use the ~ symbol:

@generate logHP = ~log(Horsepower)

The exception is when the function operates on Vectors, in which case Kezdi.jl understands you want to apply the function to the entire column.

@collapse mean_HP = mean(Horsepower), by(Cylinders)

If you need to apply a function to individual elements of a column, you need to vectorize it with adding . after the function name:

@generate words = split(Model, " ")
@generate n_words = length.(words)
Note: `length(words)` vs `length.(words)`

Here, words becomes a vector of vectors, where each element is a vector of words in the corresponding Model string. The function legth. will operate on each cell in words, counting the number of words in each Model string. By contrast, length(words) would return the number of elements in the words vector, which is the number of rows in the DataFrame.

The @if condition

Almost every command can be followed by an @if condition that filters the data frame. The command will only be executed on the subset of rows for which the condition evaluates to true. The condition can use any combination of column names and functions.

@summarize MPG @if Horsepower > median(Horsepower)
Note: vector functions in `@if` conditions

Autovectorization rules also apply to @if conditions. If you use a vector function, it will be evaluated on the entire column, before subseting the data frame. By contrast, vector functions in @generate or @collapse commands are evaluated on the subset of rows that satisfy the condition.

@generate HP_p75 = median(Horsepower) @if Horsepower > median(Horsepower)

This code computes the median of horsepower values above the median, that is, the 75th percentile of the horsepower distribution. Of course, you can more easily do this calculation with @summarize:

s = @summarize Horsepower
s.p75

Handling missing values

Kezdi.jl ignores missing values when aggregating over entire columns.

@with DataFrame(A = [1, 2, missing, 4]) begin
    @collapse mean_A = mean(A)
end

returns mean_A = 2.33.

Other functions typically return missing if any of the values are missing. If a function does not accept missing values, Kezdi.jl will pass it through passmissing to handle missing values.

You can also manually check for missing values with the ismissing function.

@with DataFrame(x = [1, 2, missing, 4]) begin
    @generate y = log(x)
end

returns

4×2 DataFrame
 Row │ x        y
     │ Int64?   Float64?
─────┼─────────────────────────
   1 │       1        0.0
   2 │       2        0.693147
   3 │ missing  missing
   4 │       4        1.38629

The same will hold for Dates.year, even though this function does not accept missing values.

julia> @with DataFrame(x = [1, 2, missing, 4]) begin
           @generate y = Dates.year(x)
       end
4×2 DataFrame
 Row │ x        y
     │ Int64?   Int64?
─────┼──────────────────
   1 │       1        1
   2 │       2        1
   3 │ missing  missing
   4 │       4        1
In `@if` conditions, `missing` is treated as `false`

In @if conditions, missing is treated as false. This is expected behavior from users, because when they test for a condition, they expect it to be true, not missing.

@with DataFrame(x = [1, 2, missing, 4]) begin
    @keep @if x <= 2
end

returns [1, 2].

Use cond instead of ternary operators

Ternary operators like x ? y : z are not vectorized in Julia. Instead, use the cond function, which provides the exact same functionality.

@with DataFrame(x = [1, 2, 3, 4]) begin
    @generate y = cond(x <= 2, 1, 0)
end

Note that you can achieve the same result with the more readable code

@with DataFrame(x = [1, 2, 3, 4]) begin
    @generate y = 1  @if x <= 2 
    @replace y = 0 @if x > 2
end
`cond` may not work as you expect with missing values

Because cond is vectorized and vectorized functions ignore missing values, this may lead to unexpected behavior. Use @replace @if instead.

Row-count variables

The variable _n refers to the row number in the data frame, _N denotes the total number of rows. These can be used in @if conditions, as well.

@with DataFrame(A = [1, 2, 3, 4]) begin
    @keep @if _n < 3
end

Differences to Stata syntax

All commands begin with @

To allow for Stata-like syntax, all commands begin with @. These are macros that rewrite your Kezdi.jl code to DataFrames.jl commands.

@tabulate Gear
@keep @if Gear == 4
@keep Model MPG Horsepower Weight Displacement Cylinders

@if condition also begins with @

The @if condition is non-standard behavior in Julia, so it is also implemented as a macro.

@collapse has same syntax as @egen

Unlike Stata, where egen and collapse have different syntax, Kezdi.jl uses the same syntax for both commands.

@egen mean_HP = mean(Horsepower), by(Cylinders)
@collapse mean_HP = mean(Horsepower), by(Cylinders)

Different function names

To maintain compatibility with Julia, we had to rename some functions. For example, count is called rowcount, missing is called ismissing, max is maximum, and min is minimum in Kezdi.jl.

Missing values

In Julia, the result of any operation involving a missing value is missing. The only exception is the ismissing function, which returns true if the value is missing and false otherwise. You cannot check for missing values with == missing.

For convenience, Kezdi.jl has special rules about Handling missing values. We also extended the ismissing function to work with multiple arguments.

@with DataFrame(x = [1, 2, missing, 4], y = [1, missing, 3, 4]) begin
    @generate z = ismissing(x, y)
end
4×3 DataFrame
 Row │ x        y        z
     │ Int64?   Int64?   Bool
─────┼─────────────────────────
   1 │       1        1  false
   2 │       2  missing   true
   3 │ missing        3   true
   4 │       4        4  false

Missing is not greater than anything, so comparison with missing values will always return missing.

In `@if` conditions, `missing` is treated as `false`

In @if conditions, missing is treated as false. This is expected behavior from users, because when they test for a condition, they expect it to be true, not missing.

@with DataFrame(x = [1, 2, missing, 4]) begin
    @keep @if x <= 2
end

returns [1, 2].

Convenience functions

Kezdi.distinctFunction
distinct(x::AbstractVector) = unique(x)

Convenience function to get the distinct values of a vector.

source
Kezdi.rowcountFunction
rowcount(x::AbstractVector) = length(keep_only_values(x))

Count the number of valid values in a vector.

source
Kezdi.keep_only_valuesFunction
keep_only_values(x::AbstractVector) -> AbstractVector

Return a vector with only the values of x, excluding any missingvalues,nothings,Infa andNaN`s.

source
Base.ismissingFunction
ismissing(args...) -> Bool

Return true if any of the arguments is missing.

source
Kezdi.condFunction
cond(x, y, z)

Return y if x is true, otherwise return z. If x is a vector, the operation is vectorized. This function mimics x ? y : z, which cannot be vectorized.

source

Acknowledgements

Inspiration for the package came from Tidier.jl, a similar package launched by Karandeep Singh that provides a dplyr-like interface for Julia. Johannes Boehm has also developed a similar package, Douglass.jl.

The package is built on top of DataFrames.jl, FreqTables.jl and FixedEffectModels.jl. The @with function relies on Chain.jl by Julius Krumbiegel.

The package is named after Gabor Kezdi, a Hungarian economist who has made significant contributions to teaching data analysis.

  • stataStata is a registered trademark of StataCorp LLC. Kezdi.jl is not affiliated with StataCorp LLC.